Бесплатная публикация статей в журналах ВАК и РИНЦ

Уважаемые авторы, образовательный интернет-портал «INFOBRAZ.RU» в рамках Всероссийской Образовательной Программы проводит прием статей для публикации в журналах из перечня ВАК РФ по направлениям: экономика, философия, политология, педагогика, филология, биология, сельское хозяйство, агроинженерия, транспорт, строительство и архитектура и др.

Возможна бесплатная публикация статей в специализированных журналах по многим отраслям и специальностям. В мультидисциплинарных журналах возможна публикация по всем другим направлениям. 

Журналы реферируются ВИНИТИ РАН. Статьям присваивается индекс DOI. Журналы включены в международную базу Ulrich's Periodicals Directory и РИНЦ.

Подпишитесь на уведомления о доступности опубликования статьи. Первую рекомендацию вы получите в течении 10 минут - ПОДПИСАТЬСЯ

Термоядерный синтез. Энергетика звезд

Цель урока: усвоение знаний и способов действий в комплексе и системе.

Дидактическая задача: формирование целостной системы ведущих знаний по теме и курсу, выделение мировоззренческих идей.

Рефлексивная деятельность ученика: самоосмысление, самореализация и саморегуляция.

Деятельность учителя по обеспечению рефлексии: подача учебного материала с учетом зоны ближайшего и актуального развития учеников, определение уровня усвоения (обучаемость и обученность).

Показатели реального результата решения задачи: самостоятельное выполнение заданий с применением знаний в знакомой и измененной ситуациях.

Общая продолжительность урока – 45 минут

Содержание учебного материала

Все сущее во все века
Без счета верст
Невидимый связует мост,
И не сорвать тебе цветка,
Не стронув звезд.
Френсис Томпсон

1. Этап актуализации опорных знаний. Вопросы ученикам:

-Чем вызывается деление тяжёлых ядер?

Предполагаемый ответ: “Бомбардировкой нейтронов”.

-Что образуется при делении тяжёлых ядер?

Предполагаемый ответ: “Ядра меньшей массы из середины таблицы Менделеева и 2-3 нейтрона”.

- Чем сопровождается деление тяжёлых ядер?

Предполагаемый ответ: “Выделением энергии”.

-В чем причина выделения энергии?

Предполагаемый ответ: “Энергия связи ядер-продуктов реакции оказывается больше чем у делящегося ядра”.

2. Этап усвоения новых знаний.

Учитель сообщает ученикам, что выделение ядерной энергии может происходить не только при реакции деления ядер, но и при реакции соединения (синтеза) ядер и предлагает рассчитать энергетический выход реакции слияния трития и дейтерия:

2

Н+3Нid160724Не + 1n

Q= (2, 014102+3, 016049-4, 002603-1, 008665) •931, 5 МэВ = 17, 6 МэВ

(При расчёте энергии выделяющейся на один нуклон оказывается, что при данном синтезе это значение равно 17,6 МэВ?5= 3,5 МэВ, в то время как при делении тяжёлых ядер 0,9 МэВ.)

Учащиеся делают вывод о том, что реакция синтеза лёгких ядер энергетически более выгодна, чем реакция деления тяжёлых и, совместно с учителем, формулируют определение:Термоядерный синтез—реакция, в которой при высокой температуре из лёгких ядер синтезируются более тяжёлые”.

Учитель обращает внимание учащихся на трудности реализации термоядерных реакций: ядра надо сблизить на расстояние, равное радиусу действия ядерных сил r~10-14м, чтобы между ними возникло сильное (ядерное) взаимодействие и началась ядерная реакция. Этому противодействует кулоновское отталкивание ядер, для преодоления которого нужно сообщить ионам большую скорость, что можно сделать, повысив температуру плазмы:

id16072

Учитывая, что максвелловское распределение по скоростям предполагает наличие определённого числа частиц, скорости которых значительно превышает среднюю квадратичную скорость, а также некоторые квантовые свойства микрочастиц (туннельный эффект), удалось показать, что термоядерные реакции начнутся и при более низких температурах, порядка 107К.

Далее рассматриваются условия, при которых могут быть реализованы столь высокие температуры:

  1. Высокая температура возникает при взрыве урановой или плутониевой бомбы, что может быть использовано для возбуждения термоядерной реакции. Это используется в водородной бомбе, где за счёт взрыва урановой оболочки смесь трития и дейтерия сильно разогревается и сжимается, что порождает взрыв.
  2. Управляемая термоядерная реакция может быть создана путём сжатия и термоизоляции дейтериево-тритиевой плазмы стационарным или импульсным магнитным полем. В настоящее время учёными ведутся интенсивные исследования в области управляемых термоядерных реакций. (Сведения о термоядерном синтезе следует иллюстрировать возможностью его использования в перспективе для получения электроэнергии и технических и научных проблемах, которые предстоит решать на этом пути: получение высоких температур, термоизоляция плазмы, получение большой плотности частиц в плазме, создание соответствующих конструкционных материалов и др.)
  3. Такие условия существуют в недрах Солнца и звёзд.

Великие астрономы прошлого не задумывались, за счёт чего светят звёзды. Вопрос исторически “созрел”, только когда был открыт закон сохранения и превращения энергии, к середине ХIХ века, после введения Робертом Юлиусом Майером, Германом Гельмгольцем и Джеймсом Джоулем этого универсального закона Природы.

Р. Ю. Майер считал, что Солнце и звёзды разогреваются в результате падения на них комет. Когда стала точно известна частота столкновений комет с Солнцем, стало понятно, что это не объясняет солнечную светимость.

Г. Гельмгольц и У. Томсон предполагали, что звёзды разогреваются и излучают вследствие постоянного гравитационного сжатия; расчёты показали, что кроме гравитационного источника, ответственного за первичный разогрев, должен существовать основной механизм, “включающийся” при высокой температуре.

А. Эддингтон и Д. Джинс, каждый по-своему, искали главный источник: первый — в реакциях аннигиляции вещества, второй - в реакциях радиоактивного распада.

Л. Д. Ландау в 1937 году предложил идею аккреционного источника: каждая звезда имеет плотную нейтронную сердцевину, падение вещества (аккреция) на которую является эффективной тепловой машиной, преобразующей в энергию ~30% массы.

Ни одна из предложенных гипотез не справилась с задачей. Но верная идея термоядерного источника, высказанная в 1929 году, подхваченная и развитая многими физиками (Г. Гамов, Э. Теллер, К. Вайцзеккер и др.), нашла окончательное выражение в блестящих работах Х. Бете.

Основным процессом, в котором происходит освобождение термоядерной энергии в нормальных звёздах, является превращение водорода в гелий.

4 11Н id1607242Н + 2 e+ + 2v +Q ,

Энерговыделение реакции: Q=26,8 МэВ.

Этот процесс идёт не непосредственно, а через ряд промежуточных реакций и может выполняться двумя путями:

Протонно-протонный цикл (рр) Углеродно-азотный цикл (CN)
1Н + 1Н id16072 2D + e+ + v

2

D + 1Н id16072 3Не + id16072

e+ + e-id16072 2id16072

3

Не + 3Неid16072 4Не + 1Н +1Н
12С +1Нid1607213N + id16072

13

N id1607213C + e+ + v

13

С + 1Н id1607214N + id16072

14

N + 1Н id16072 15О + id16072

15

О id1607215N + e+ + v

15

N + 1Н id16072 12С + 4Не

3.Практическая работа. Задание: “Рассчитать энергетический выход каждой реакции циклов и результирующее энерговыделение цикла”.

Класс делится на две группы: одна группа работает с рр - циклом, вторая — СN.

(Т.к. количество уравнений в циклах различно, то целесообразно чтобы во второй группе количество учеников было больше.)

Отчет оформляется в виде таблицы:

Реакция Энерговыделение, МэВ
Итого:

По окончании работы представители групп освещают результаты расчётов.

Учителю необходимо обратить внимание учащихся на то, что рр - цикл является преобладающим для Солнца и менее ярких звёзд, а для более ярких — углеродный цикл. Причём, естественные процессы энерговыделения в звёздах не ограничиваются только рассмотренными циклами.

4. Подведение итогов урока.

Необходимо подчеркнуть, что данная тема не ограничивается вопросами, рассмотренными в рамках урока. Термоядерный синтез — процесс, обуславливающий эволюцию Вселенной и перспективная надежда современной энергетики.

Литература.

  1. Лучков Б. И. Элементарная астрофизика и космология для школьного курса физики. Лекция 2. Энергетика звезд. Галактики, скопления галактик. // Физика (Первое сентября), 2005, № 18, с. 14 -21.
  2. Лучков Б. И. Элементарная астрофизика и космология для школьного курса физики. Лекция 3. Эволюция звезд. Контрольная работа № 1. // Физика (Первое сентября), 2005, № 19, с. 12 -20.
  3. Сивухин Д. В. Атомная и ядерная физика: Учеб. пособие для вузов. В 2-х ч. Ч. 2. Ядерная физика. - М.: Наука. Главная редакция физико-математической литературы, 1989.
  4. Шкловский И. С. Звезды: их рождение, жизнь и смерть. - М.: Наука. Главная редакция физико-математической литературы, 1984.
  5. Касьянов В. А. Физика. 11 кл.: Учебн. для общеобразоват. учеб. заведений.- М.: Дрофа, 2005.

12.03.2008